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We present an approach to study the ground-state and elementary excitations in compounds where spins and
orbitals are entangled by on-site relativistic spin-orbit interaction. The appropriate degrees of freedom are
localized states with an effective angular momentum J. We generalize J to arbitrary large values while main-
taining the delicate spin-orbital entanglement. After projecting the intersite exchange interaction to the mani-
fold of effective spins, a systematic 1 /J expansion of the effective Hamiltonian is realized using the Holstein-
Primakoff transformation. Applications to representative compounds Sr2IrO4 and particularly vanadium spinels
AV2O4 are discussed.
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I. INTRODUCTION

Transition-metal compounds with partially filled orbitals
have attracted considerable attention in recent years.1 The
interplay of spin and orbital degrees of freedom leads to a
variety of interesting ground states and elementary excita-
tions. Particularly, a long-range orbital order in the
ground state makes possible the propagating orbital
excitations, or orbitons,2 in addition to the familiar spin
waves. The intricate spin-orbital interaction dictated by the
Kugel-Khomskii-type3 superexchange �SE� Hamiltonian
gives rise to a magnon spectrum which depends on the or-
bital order and vice versa. Meanwhile, interaction between
the two types of quasiparticles leads to their scattering and
decay.

Recently, there are a growing number of orbitally degen-
erate compounds whose elementary excitations cannot be de-
scribed by the above paradigm based on magnons and orbi-
tons. A common feature shared by these compounds is the
presence of a strong relativistic spin-orbit �SO� interaction
VLS=��L ·S�; most notable among them are vanadium and
iridium oxides containing V3+ and Ir4+ ions, respectively.4–7

To understand these systems, one should start with localized
degrees of freedom which diagonalize the SO coupling.7–9

Such atomic states are usually composed of complex orbitals
and are characterized by an effective angular momentum J.
The on-site spin-orbital entanglement leads not only to
ground states with orbital-moment ordering,8,10 but also to
the appearance of composite quasiparticles which carry both
spin and orbital characters.

Although several theoretical studies have been devoted to
understanding of the ground-state properties in the limit of
strong SO coupling,8–12 very few works address the problem
of elementary excitations. A straightforward approach is to
use the magnon/orbiton description starting from the �=0
ground state and to treat SO interaction as a perturbation.13

However, as the large-� ground state is fundamentally differ-
ent from that of �=0, such a formulation would not neces-
sarily capture features like ordering of orbital moments. An-
other alternative is the magnetic-exciton model. Its
application to vanadium spinels reveals an excitation spec-
trum characterized by transitions between states with differ-
ent Jz.

14 Despite its success in providing a basic structure of

excitations in the large � limit, the magnetic-exciton model
relies on an ill-controlled mean-field decoupling of the SE
interaction. Besides, the model itself does not offer much
insight to the ground-state structure.

In this Rapid Communication, we present a theoretical
framework to study magnetically ordered ground state and
its quasiparticles in systems with a dominating SO interac-
tion. Instead of naively extending the length of the effective
spin, our large-J generalization preserves the delicate en-
tanglement between spins and orbitals. After obtaining the
classical ground states in the J→� limit, a systematic 1 /J
expansion can be attained with the aid of Holstein-Primakoff
transformation. Using the large-J approach, we examine two
canonical examples: the iridium and vanadium compounds
with effective spins J=1 /2 and J=2, respectively. In the case
of Ir4+ ion, the large-J approach is equivalent to conventional
large-S method; the classical Hamiltonian has the same form
as its quantum counterpart.

The situation for V3+ ion is more complicated. By mini-
mizing the J→� limit of the effective Hamiltonian, we ob-
tain a classical phase diagram of vanadium spinels. Our re-
sult provides a coherent explanation for the collinear and
orthogonal antiferromagnetic orders observed in spinels
ZnV2O4 and MnV2O4, respectively. The SE interaction in
vanadium spinels has rather distinct characteristics in spin
and orbital channels: while the spin exchange preserves a
SU�2� symmetry, the orbital part resembles an anisotropic
three-state Potts model. We find that the strong spatial depen-
dence of the orbital exchange leads to a gapped excitation
spectrum with a narrow bandwidth.

II. SPIN-ORBIT COUPLING AND EFFECTIVE SPINS

We start by describing the general large-J extension and
then discuss specific applications to Ir4+ and V3+ ions with d5

and d2 configurations, respectively. In both cases, the orbital
degrees of freedom of a partially filled t2g triplet are de-
scribed by an effective angular momentum of length L�=1.
The true angular momentum is given by L=�L�, where � of
order one is the so-called covalency factor.15 The SO inter-
action VLS=���L� ·S� is diagonalized by the eigenstates of
the “total angular momentum” J=L�+S. Depending on the
sign of �, the ground state has an effective angular momen-
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tum of length Jeff�L��S and is separated from the excited
states by a gap of order �.

In order to carry out a controlled 1 /J expansion of the
effective Hamiltonian, we first generalize J to arbitrary
values by considering a fictitious ion with N identical
copies of t2g triplets. The generalized SO interaction is
VLS=���m=1

N Lm� ·Sm, where Lm� and Sm are orbital momen-
tum and spin operators of the mth t2g triplet, respectively. We
further assume that only states which are symmetric with
respect to the N degenerate t2g triplets are allowed physical
states. In the atomic ground state, each t2g triplet has an
angular momentum of length Jm=Jeff=L��S, where
Jm=Lm� +Sm, and the symmetric sum J=�m=1

N Jm has the
maximum length J=NJeff.

Single-ion operators such as orbital projections and spins
are extended accordingly: P�=�m=1

N Pm,� and S=�m=1
N Sm. To

obtain their representation in the J=NJeff subspace, we ex-
pand its basis �J ,Jz� with respect to the quantum number Jm,z
of the mth t2g triplet

�J,Jz� = �
Jm,z

CJz,Jm,z
�Jeff,Jm,z� � �J − Jeff,Jz − Jm,z� , �1�

where CJz,Jm,z
are the Clebsch-Gordon coefficients. By fur-

ther expressing �Jm ,Jm,z� in terms of �Lm,z� ,Sm,z�, one obtains
the matrix elements of operators acting on the m-th t2g orbit-
als. As the J=NJeff subspace only contains permutationally
symmetric states, the overall operator at a site is just N times
that of a single t2g triplet, e.g., S=NSm.

Taking into account the intersite exchange interaction, the
effective Hamiltonian of the angular momenta Ji in the
�→� limit is given by Heff�PHSEP, where P is the pro-
jection operator onto the J=NJeff manifold, and HSE is the
spin-orbital superexchange Hamiltonian.

Ir4+ ions: L�=1 and S=1 /2. The iridium ions in com-
pounds such as Sr2IrO4 are in the low spin 5d5 configuration
with a positive covalency ��1.15 The atomic ground state
has an effective spin Jeff=1 /2. By introducing N identical t2g
replicas as described above, we generalize the effective spin
to arbitrary large values J=N /2. Restricted to the lowest-
energy manifold, we find Pxy = Pyz= Pzx=2J /3, i.e., the elec-
trons equally populate the three t2g orbitals. The angular mo-
mentum and spin operators are given by

S = − J/3, L� = 4J/3. �2�

The magnetic moment of the Ir4+ ion is �=�B�2S+�L��
�

2�B

3 J. For compounds with 180° Ir-O-Ir bonds, the pro-
jected Hamiltonian

Heff = J1�
�ij�

Ji · J j + J2�
�ij�

�Ji · r̂ij��J j · r̂ij� �3�

is dominated by a Heisenberg isotropic exchange plus a
pseudodipolar interaction.9 Here J1�4J and J2�2�J are
effective exchange constants, �=JH /U is the ratio of Hund’s
coupling to on-site Coulomb repulsion U, and J= t2 /U de-
fines the overall exchange energy scale. More importantly,
we find that the large-J version of the effective Hamiltonian,
and particularly the classical limit �J→��, has the same
form as the quantum Hamiltonian in Ref. 9. The large-J ap-

proach in this case thus is equivalent to the conventional
large-S extension. In Sr2IrO4, the ‘weak’ ferromagnetic mo-
ment accompanying the ground-state antiferromagnetic order
is explained by treating the spins as classical objects and
taking into account the staggered rotations of the IrO6
octahedra.9 The large-J approach thus provides a theoretical
basis for the classical treatment of the effective quantum
Hamiltonian.

V3+ ions: L�=1 and S=1. Vanadium ions in cubic and
spinel vanadates have a 3d2 configuration and a negative �.
Consequently, the effective angular momentum minimizing
the SO interaction has a length of Jeff=2. The large-J gener-
alization leads to the following orbital projection operator

Pxy =
J�J − 1� + Jz

2

2�2J − 1�
. �4�

For projections Pyz/zx, we replace Jz by Jx and Jy, respec-
tively. It could be easily checked that Pyz+ Pzx+ Pxy =J,
which is just the total number of electrons 2N. Similarly,
projected to the J=2N subspace, the spin and orbital momen-
tum operators are

S = J/2, L� = J/2. �5�

The angular-momentum quanta are evenly divided between
the spin and orbital channels. The V3+ ion has a reduced
magnetic moment �=�B�1− ��� /2�J�

�B

2 J. Due to the spin-
orbital entanglement of the J=2N states, the representation
of the operator product P�S in this subspace is different from
the matrix product of individual operators. Instead, we find

PxyS =
�J − 1�J

2�2J − 1�
+

JzJJz

2�J − 1��2J − 1�
. �6�

The cubic symmetry of the system allows us to obtain the
expressions with Pyz and Pzx projections by simply replacing
Jz by Jx and Jy, respectively.

The discussion so far has been general and is applicable to
vanadium compounds with V3+ ions in an octahedral crystal
field. We now focus on the case of spinels where the vana-
dium ions form the pyrochlore lattice, a network of corner-
sharing tetrahedra. The 90° V-O-V bonds make direct ex-
change the primary mechanism of the SE interaction.11,16

The resulting Potts-like orbital interaction leads to a highly
anisotropic effective Hamiltonian in both coordinate and spin
spaces.

Restricted to the J=2N manifold, the effective quantum
Hamiltonian can be obtained by substituting the operator ex-
pressions �4�–�6� into the SE Hamiltonian for vanadium
spinels. After introducing normalized classical spins

Ĵi�Ji /J, the effective Hamiltonian in the classical limit
J→� becomes

Heff = J1J2�
�ij�

�Ĵi,	Ĵj,	�2 + J2J2�
�ij�

�1 + Ĵi,	
2 ��1 + Ĵj,	

2 �Ĵi · Ĵ j

− J3J2�
�ij�

	1 − �Ĵi,	Ĵj,	�2
Ĵi · Ĵ j . �7�

Here the subscript 	=	�ij� denotes the x, y, or z component
of the angular momentum Ji depending on whether the
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nearest-neighbor bond �ij� points along the �011�, �101�,
or �110� directions, respectively. To lowest order in �,
the effective exchange constants are J1� 1

16�1+5��J,
J2� 1

16�1−��J, and J3� �
8 J.11,16

III. CLASSICAL GROUND STATE OF VANADIUM
SPINELS

There has been much experimental effort to understand
the properties of spinel vanadates AV2O4. For divalent ion
A=Zn, Cd, and Mg, magnetic moments of V3+ ions are or-
dered collinearly in the ground state.4,5 Theoretical models
based on a large SO coupling have been proposed to explain
the observed spin and orbital ordering.8,11,12 However, a re-
cent experimental characterization of another spinel MnV2O4
shows an orthogonal magnetic structure of vanadium spins.6

The mechanisms that stabilize the orthogonal magnetic order
remains unclear. Based on the large-J approach, here we pro-
pose a unifying model for the magnetic and orbital order in
vanadium spinels.

The partially filled t2g orbitals also couple to the
distortions of the surrounding VO6 octahedron. Indeed, both
types of vanadium spinels undergo a cubic-to-tetragonal
structural transition which accompanies the orbital ordering.
The lattice distortion results in a splitting of the t2g triplet:
VJT=�
�
P
, where 
 runs over the three t2g states. Using
Eq. �4�, the JT coupling can be recast into

VJT = �1�Jx
2 + Jy

2 − 2Jz
2�/�6 + �2�Jx

2 − Jy
2�/�2, �8�

where ��1 ,�2� transforming as a doublet irreducible repre-
sentation under the symmetry group Oh denote the tetragonal
and orthorhombic distortions of the VO6 octahedron, respec-
tively.

Structural distortions compatible with the observed tetrag-
onal symmetry �lattice constants a=b�c� in general in-
volves q=0 phonons with symmetries Eg and F1g.17 The Eg
distortion gives rise to a uniform anisotropy �1, whereas soft-
ening of rotational F1g phonons creates a staggered ortho-
rhombic distortions ��2 on VO6 octahedra along the 	110

and 	11̄0
 chains, respectively.17 Classical ground state of a
tetrahedron, the building block of the pyrochlore lattice, is
obtained by minimizing the sum of effective Hamiltonian �7�
and JT coupling �8�. The resulting phase diagram is shown in
Fig. 1�a�.

The orthogonal magnetic order is stabilized at large val-
ues of the staggered F1g distortion �2. Interestingly, the or-
thogonal structure also minimizes the J1 term of Heff, which
originates from the antiferro-orbital interaction in the origi-
nal SE Hamiltonian. From Eq. �4�, we see that dzx and dyz

orbitals are fully occupied along the 	110
 and 	11̄0
 chains,
respectively. This antiferro-orbital ordering is consistent with
the low-temperature symmetry I41 /a of MnV2O4.6 We note
that the inclusion of SO interaction does not seem to affect
the orbital-ordering pattern.18 This could be attributed to the
already mixed orbital states favored by a strong local trigonal
distortion in MnV2O4.

On the other hand, the collinear antiferromagnetic order
becomes the ground state when the lattice distortion is domi-

nated by the Eg mode with �1�0, which gives rise to an
easy-axis anisotropy according to Eq. �8� The J2 term in Eq.
�7� indicates that collinear spins parallel to the z-axis have
the largest antiferromagnetic coupling on nearest-neighbor
bonds lying in the xy planes. The ground state can then be
viewed as a collection of antiferromagnetic Ising chains run-

ning along the 	110
 and 	11̄0
 directions 	Fig. 1�c�
, as was
indeed observed in ZnV2O4.4 The resulting orbital ordering
has occupation numbers nxy =1 and nyz=nzx=1 /2, also con-
sistent with the observed I41 /amd symmetry in ZnV2O4.5 A
similar staggered ordering of effective moment J is found in
cubic vanadates at large �.10

IV. HOLSTEIN-PRIMAKOFF TRANSFORMATION

Once the classical ground state is determined from the
effective Hamiltonian, one can carry out a controlled 1 /J
expansion using the Holstein-Primakoff transformation,

Jz = J − a†a, J+ = �2J − a†aa, J− = J+
† . �9�

The linear quasiparticle spectrum can then be obtained with
the aid of Bogoliubov transformation; the calculated spectra
for the orthogonal and collinear magnetic orders are shown
by the solid lines in Fig. 2.

In the case of q=0 orthogonal magnetic order, we obtain
an acousticlike band whose gap scales as ���2−�2c in the
vicinity of �2c=0.154J. The gapless mode at �2c signals the
transition from phases D–C in Fig. 1�b�. Although a similar
gapped acoustic mode ��1.5 meV� whose origin is attrib-
uted to the orthogonal order was indeed observed in
MnV2O4,6 the effect of the magnetic Mn2+ ions �S=5 /2�
remains to be clarified. On the contrary, all quasiparticle
bands of the collinear magnetic order have an energy gap
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FIG. 1. �Color online� �a� Classical phase diagram of a tetrahe-
dron. Black and white circles denote �Jz components, respectively.
�1 and �2 denote the uniform Eg and staggered F1g distortions,
respectively. A narrow low-symmetric phase with noncoplanar spins
exists between phases B and C. �b� The q=0 orthogonal order and
�c� the q= �001� collinear order are observed in spinels MnV2O4

and ZnV2O4, respectively.
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�0.6J even when �1=0. This is because the staggered
arrangement of frustrated bonds �parallel spins� in the
q= �001� collinear order prevents the onset of the soft mode
B shown in Fig. 1.

Also shown for comparison is magnon spectrum of the
collinear order in the absence of SO coupling �dashed
lines�.14 The Goldstone mode at the zone center reflects the
global O�3� symmetry of the superexchange Hamiltonian in
the �=0 limit. The rather narrow bandwidth of the excitation
spectrum in the large � limit can be attributed to the fact that
quasiparticles also carry orbital degrees of freedom whose
Potts-like interactions are static.

V. CONCLUSION AND OUTLOOK

To summarize, we present an approach to the nontrivial
problem of elementary excitations in systems with on-site

spin-orbital entanglement. For such compounds, the ground-
state magnetic order is usually accompanied by a long-range
ordering of orbital moments. The bosonic elementary excita-
tions resulting from deviations of the perfect order thus carry
both spin and orbital degrees of freedom. Starting with the
J→� limit, a systematic treatment of the elementary excita-
tions can be realized through the standard 1 /J expansion.
The quasiparticle spectrum is obtained by diagonalizing the
quadratic Hamiltonian. Higher-order effects such as quasi-
particle scattering can also be studied using well developed
methods from conventional large-S approach.

It is worth noting that spin-orbital entanglement could ex-
ist even in the absence of SO coupling due to the operator
structure of SE Hamiltonian. For example, it is shown that
composite spin-orbital fluctuations in cubic vanadates lead to
orbital-disordered phase and violation of the Goodenough-
Kanamori rules.19 As the large-J Hamiltonian Heff=PHSEP
represents the lowest-order term in a J /� expansion, another
important front is to include the effects of finite �. Higher-
order terms can be obtained following the perturbation ex-
pansion of the SE Hamiltonian. In studying real compounds,
� is usually of the same order of exchange J. Whether the
excitations can be described by the large-J approach depends
on the nature of the ground state. In the presence of orbital-
moment ordering, we think the large-J method would be the
appropriate choice.

Finally, we note that the classical effective Hamiltonian
obtained in the J→� limit provides a practical working
model for analyzing the experimental data. Furthermore, be-
ing a generic approach, our method can be easily adapted to
other compounds where a large SO coupling dominates the
low-energy physics.
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FIG. 2. �Color online� Quasiparticle spectra of vanadium spinels
with �a� q=0 orthogonal and �b� q= �001� collinear magnetic orders
in the limit of strong spin-orbit coupling �solid lines�. Also shown
for comparison is the magnon spectrum of the collinear order with-
out spin-orbit coupling �dashed lines�. In obtaining these spectra,
we have used �1=0, �2=0.2J, and �1=�2=0 in �a� and �b�,
respectively. The symmetry points in k-space are �= �0,0 ,0�,
L= � 1

2 , 1
2 , 1

2 �, Y = �0,1 ,0�, and Y�= �0,1 , 1
2 �. The energy �k is

measured in units of J� t2 /U. The inset in �a� shows the energy
gap  as a function of staggered distortion �2.
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