Large-*J* **approach to strongly coupled spin-orbital systems**

Gia-Wei Chern and Natalia Perkins

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA (Received 21 August 2009; revised manuscript received 13 October 2009; published 11 November 2009)

We present an approach to study the ground-state and elementary excitations in compounds where spins and orbitals are entangled by on-site relativistic spin-orbit interaction. The appropriate degrees of freedom are localized states with an effective angular momentum *J*. We generalize *J* to arbitrary large values while maintaining the delicate spin-orbital entanglement. After projecting the intersite exchange interaction to the manifold of effective spins, a systematic $1/J$ expansion of the effective Hamiltonian is realized using the Holstein-Primakoff transformation. Applications to representative compounds $Sr₂IrO₄$ and particularly vanadium spinels AV_2O_4 are discussed.

DOI: [10.1103/PhysRevB.80.180409](http://dx.doi.org/10.1103/PhysRevB.80.180409)

 $: 75.10, -b, 75.20$.Hr, 75.30.Mb, 71.27. $+a$

I. INTRODUCTION

Transition-metal compounds with partially filled orbitals have attracted considerable attention in recent years.¹ The interplay of spin and orbital degrees of freedom leads to a variety of interesting ground states and elementary excitations. Particularly, a long-range orbital order in the ground state makes possible the propagating orbital excitations, or orbitons, 2 in addition to the familiar spin waves. The intricate spin-orbital interaction dictated by the Kugel-Khomskii-type³ superexchange (SE) Hamiltonian gives rise to a magnon spectrum which depends on the orbital order and vice versa. Meanwhile, interaction between the two types of quasiparticles leads to their scattering and decay.

Recently, there are a growing number of orbitally degenerate compounds whose elementary excitations cannot be described by the above paradigm based on magnons and orbitons. A common feature shared by these compounds is the presence of a strong relativistic spin-orbit (SO) interaction $V_{LS} = \lambda (\mathbf{L} \cdot \mathbf{S})$; most notable among them are vanadium and iridium oxides containing V^{3+} and Ir⁴⁺ ions, respectively.⁴⁻⁷ To understand these systems, one should start with localized degrees of freedom which diagonalize the SO coupling.^{7[–9](#page-3-5)} Such atomic states are usually composed of complex orbitals and are characterized by an effective angular momentum *J*. The on-site spin-orbital entanglement leads not only to ground states with orbital-moment ordering, $8,10$ $8,10$ but also to the appearance of composite quasiparticles which carry both spin and orbital characters.

Although several theoretical studies have been devoted to understanding of the ground-state properties in the limit of strong SO coupling, $8-\overline{12}$ very few works address the problem of elementary excitations. A straightforward approach is to use the magnon/orbiton description starting from the $\lambda = 0$ ground state and to treat SO interaction as a perturbation.¹³ However, as the large- λ ground state is fundamentally different from that of $\lambda = 0$, such a formulation would not necessarily capture features like ordering of orbital moments. Another alternative is the magnetic-exciton model. Its application to vanadium spinels reveals an excitation spectrum characterized by transitions between states with different J_z .^{[14](#page-3-10)} Despite its success in providing a basic structure of

excitations in the large λ limit, the magnetic-exciton model relies on an ill-controlled mean-field decoupling of the SE interaction. Besides, the model itself does not offer much insight to the ground-state structure.

In this Rapid Communication, we present a theoretical framework to study magnetically ordered ground state and its quasiparticles in systems with a dominating SO interaction. Instead of naively extending the length of the effective spin, our large-*J* generalization preserves the delicate entanglement between spins and orbitals. After obtaining the classical ground states in the $J \rightarrow \infty$ limit, a systematic $1/J$ expansion can be attained with the aid of Holstein-Primakoff transformation. Using the large-*J* approach, we examine two canonical examples: the iridium and vanadium compounds with effective spins $J=1/2$ and $J=2$, respectively. In the case of Ir⁴⁺ ion, the large-*J* approach is equivalent to conventional large-*S* method; the classical Hamiltonian has the same form as its quantum counterpart.

The situation for V^{3+} ion is more complicated. By minimizing the $J \rightarrow \infty$ limit of the effective Hamiltonian, we obtain a classical phase diagram of vanadium spinels. Our result provides a coherent explanation for the collinear and orthogonal antiferromagnetic orders observed in spinels ZnV_2O_4 and MnV_2O_4 , respectively. The SE interaction in vanadium spinels has rather distinct characteristics in spin and orbital channels: while the spin exchange preserves a SU(2) symmetry, the orbital part resembles an anisotropic three-state Potts model. We find that the strong spatial dependence of the orbital exchange leads to a gapped excitation spectrum with a narrow bandwidth.

II. SPIN-ORBIT COUPLING AND EFFECTIVE SPINS

We start by describing the general large-*J* extension and then discuss specific applications to Ir⁴⁺ and V^{3+} ions with d^5 and d^2 configurations, respectively. In both cases, the orbital degrees of freedom of a partially filled t_{2g} triplet are described by an effective angular momentum of length $L'=1$. The true angular momentum is given by $\mathbf{L} = \alpha \mathbf{L}'$, where α of order one is the so-called covalency factor.¹⁵ The SO interaction $V_{LS} = \alpha \lambda (\mathbf{L}' \cdot \mathbf{S})$ is diagonalized by the eigenstates of the "total angular momentum" $J = L' + S$. Depending on the sign of α , the ground state has an effective angular momentum of length $J_{\text{eff}} \equiv L' \pm S$ and is separated from the excited states by a gap of order λ .

In order to carry out a controlled 1/*J* expansion of the effective Hamiltonian, we first generalize *J* to arbitrary values by considering a fictitious ion with *N* identical copies of t_{2g} triplets. The generalized SO interaction is $V_{LS} = \alpha \lambda \sum_{m=1}^{N} L'_m \cdot \mathbf{S}_m$, where \mathbf{L}'_m and \mathbf{S}_m are orbital momentum and spin operators of the m th t_{2g} triplet, respectively. We further assume that only states which are symmetric with respect to the *N* degenerate t_{2g} triplets are allowed physical states. In the atomic ground state, each t_{2g} triplet has an angular momentum of length $J_m = J_{eff} = L' \pm S$, where $J_m = L'_m + S_m$, and the symmetric sum $J = \sum_{m=1}^{N} J_m$ has the maximum length $J = NJ_{\text{eff}}$.

Single-ion operators such as orbital projections and spins are extended accordingly: $P_{\alpha} = \sum_{m=1}^{N} P_{m,\alpha}$ and $\mathbf{S} = \sum_{m=1}^{N} \mathbf{S}_{m}$. To obtain their representation in the *J*=*NJ*eff subspace, we expand its basis $|J,J_z\rangle$ with respect to the quantum number $J_{m,z}$ of the *m*th t_{2g} triplet

$$
|J,J_z\rangle = \sum_{J_{m,z}} C_{J_z,J_{m,z}} |J_{\text{eff}},J_{m,z}\rangle \otimes |J-J_{\text{eff}},J_z-J_{m,z}\rangle, \qquad (1)
$$

where $C_{J_z, J_{m,z}}$ are the Clebsch-Gordon coefficients. By further expressing $|J_m, J_{m,z}\rangle$ in terms of $|L'_{m,z}, S_{m,z}\rangle$, one obtains the matrix elements of operators acting on the m -th t_{2g} orbitals. As the *J*=*NJ*eff subspace only contains permutationally symmetric states, the overall operator at a site is just *N* times that of a single t_{2g} triplet, e.g., $S = NS_m$.

Taking into account the intersite exchange interaction, the effective Hamiltonian of the angular momenta J_i in the $\lambda \rightarrow \infty$ limit is given by $H_{\text{eff}} \equiv \mathcal{P}H_{\text{SE}}\mathcal{P}$, where $\mathcal P$ is the projection operator onto the $J = NJ_{eff}$ manifold, and H_{SE} is the spin-orbital superexchange Hamiltonian.

Ir⁴⁺ *ions:* $\hat{L}'=1$ and $\hat{S}=1/2$. The iridium ions in compounds such as Sr_2IrO_4 are in the low spin $5d^5$ configuration with a positive covalency $\alpha \approx 1$.¹⁵ The atomic ground state has an effective spin $J_{\text{eff}}= 1/2$. By introducing *N* identical t_{2g} replicas as described above, we generalize the effective spin to arbitrary large values *J*=*N*/2. Restricted to the lowestenergy manifold, we find $P_{xy} = P_{yz} = P_{zx} = 2J/3$, i.e., the electrons equally populate the three t_{2g} orbitals. The angular momentum and spin operators are given by

$$
S = -J/3
$$
, $L' = 4J/3$. (2)

The magnetic moment of the Ir⁴⁺ ion is $\mu = \mu_B(2S + \alpha L')$ $\approx \frac{2\mu_B}{3}$ **J**. For compounds with 180° Ir-O-Ir bonds, the projected Hamiltonian

$$
H_{\text{eff}} = \mathcal{J}_1 \sum_{\langle ij \rangle} \mathbf{J}_i \cdot \mathbf{J}_j + \mathcal{J}_2 \sum_{\langle ij \rangle} (\mathbf{J}_i \cdot \hat{\mathbf{r}}_{ij}) (\mathbf{J}_j \cdot \hat{\mathbf{r}}_{ij})
$$
(3)

is dominated by a Heisenberg isotropic exchange plus a pseudodipolar interaction.⁹ Here $\mathcal{J}_1 \approx 4\mathcal{J}$ and $\mathcal{J}_2 \approx 2\eta \mathcal{J}$ are effective exchange constants, $\eta = J_H / U$ is the ratio of Hund's coupling to on-site Coulomb repulsion *U*, and $\mathcal{J} = t^2 / U$ defines the overall exchange energy scale. More importantly, we find that the large-*J* version of the effective Hamiltonian, and particularly the classical limit $(J \rightarrow \infty)$, has the same form as the quantum Hamiltonian in Ref. [9.](#page-3-5) The large-*J* approach in this case thus is equivalent to the conventional large-*S* extension. In $Sr₂IrO₄$, the 'weak' ferromagnetic moment accompanying the ground-state antiferromagnetic order is explained by treating the spins as classical objects and taking into account the staggered rotations of the $IrO₆$ octahedra[.9](#page-3-5) The large-*J* approach thus provides a theoretical basis for the classical treatment of the effective quantum Hamiltonian.

 V^{3+} *ions:* $L' = 1$ and $S = 1$. Vanadium ions in cubic and spinel vanadates have a $3d^2$ configuration and a negative α . Consequently, the effective angular momentum minimizing the SO interaction has a length of $J_{\text{eff}}=2$. The large-*J* generalization leads to the following orbital projection operator

$$
P_{xy} = \frac{J(J-1) + J_z^2}{2(2J-1)}.
$$
\n(4)

For projections $P_{yz/zx}$, we replace J_z by J_x and J_y , respectively. It could be easily checked that $P_{yz} + P_{zx} + P_{xy} = J$, which is just the total number of electrons 2*N*. Similarly, projected to the *J*= 2*N* subspace, the spin and orbital momentum operators are

$$
\mathbf{S} = \mathbf{J}/2, \quad \mathbf{L}' = \mathbf{J}/2. \tag{5}
$$

The angular-momentum quanta are evenly divided between the spin and orbital channels. The V^{3+} ion has a reduced magnetic moment $\boldsymbol{\mu} = \mu_B(1 - |\alpha|/2) \mathbf{J} \approx \frac{\mu_B}{2} \mathbf{J}$. Due to the spinorbital entanglement of the *J*= 2*N* states, the representation of the operator product P_{α} **S** in this subspace is different from the matrix product of individual operators. Instead, we find

$$
P_{xy}\mathbf{S} = \frac{(J-1)\mathbf{J}}{2(2J-1)} + \frac{J_z\mathbf{J}J_z}{2(J-1)(2J-1)}.
$$
 (6)

The cubic symmetry of the system allows us to obtain the expressions with P_{yz} and P_{zx} projections by simply replacing J_z by J_x and J_y , respectively.

The discussion so far has been general and is applicable to vanadium compounds with V^{3+} ions in an octahedral crystal field. We now focus on the case of spinels where the vanadium ions form the *pyrochlore* lattice, a network of cornersharing tetrahedra. The 90° V-O-V bonds make direct exchange the primary mechanism of the SE interaction. $11,16$ $11,16$ The resulting Potts-like orbital interaction leads to a highly anisotropic effective Hamiltonian in both coordinate and spin spaces.

Restricted to the *J*= 2*N* manifold, the effective quantum Hamiltonian can be obtained by substituting the operator expressions (4) (4) (4) – (6) (6) (6) into the SE Hamiltonian for vanadium spinels. After introducing normalized classical spins $\hat{\mathbf{J}}_i = \mathbf{J}_i / J$, the effective Hamiltonian in the classical limit $J \rightarrow \infty$ becomes

$$
H_{\text{eff}} = \mathcal{J}_1 J^2 \sum_{\langle ij \rangle} (\hat{J}_{i,\gamma} \hat{J}_{j,\gamma})^2 + \mathcal{J}_2 J^2 \sum_{\langle ij \rangle} (1 + \hat{J}_{i,\gamma}^2)(1 + \hat{J}_{j,\gamma}^2) \hat{\mathbf{J}}_i \cdot \hat{\mathbf{J}}_j
$$

- $\mathcal{J}_3 J^2 \sum_{\langle ij \rangle} [1 - (\hat{J}_{i,\gamma} \hat{J}_{j,\gamma})^2] \hat{\mathbf{J}}_i \cdot \hat{\mathbf{J}}_j.$ (7)

Here the subscript $\gamma = \gamma(ij)$ denotes the *x*, *y*, or *z* component of the angular momentum J_i depending on whether the

LARGE-*J* APPROACH TO STRONGLY COUPLED SPIN-...

nearest-neighbor bond $\langle ij \rangle$ points along the $\langle 011 \rangle$, $\langle 101 \rangle$, or $\langle 110 \rangle$ directions, respectively. To lowest order in η , the effective exchange constants are $\mathcal{J}_1 \approx \frac{1}{16} (1 + 5 \eta) \mathcal{J}$, $\mathcal{J}_2 \approx \frac{1}{16} (1 - \eta) \mathcal{J}$ $\mathcal{J}_2 \approx \frac{1}{16} (1 - \eta) \mathcal{J}$ $\mathcal{J}_2 \approx \frac{1}{16} (1 - \eta) \mathcal{J}$, and $\mathcal{J}_3 \approx \frac{\eta}{8} \mathcal{J}^{(11,16)}$ $\mathcal{J}_3 \approx \frac{\eta}{8} \mathcal{J}^{(11,16)}$ $\mathcal{J}_3 \approx \frac{\eta}{8} \mathcal{J}^{(11,16)}$

III. CLASSICAL GROUND STATE OF VANADIUM SPINELS

There has been much experimental effort to understand the properties of spinel vanadates AV_2O_4 . For divalent ion $A = Zn$, Cd, and Mg, magnetic moments of V^{3+} ions are or-dered collinearly in the ground state.^{4[,5](#page-3-14)} Theoretical models based on a large SO coupling have been proposed to explain the observed spin and orbital ordering. $8,11,12$ $8,11,12$ $8,11,12$ However, a recent experimental characterization of another spinel MnV_2O_4 shows an orthogonal magnetic structure of vanadium spins.⁶ The mechanisms that stabilize the orthogonal magnetic order remains unclear. Based on the large-*J* approach, here we propose a unifying model for the magnetic and orbital order in vanadium spinels.

The partially filled t_{2g} orbitals also couple to the distortions of the surrounding $VO₆$ octahedron. Indeed, both types of vanadium spinels undergo a cubic-to-tetragonal structural transition which accompanies the orbital ordering. The lattice distortion results in a splitting of the t_{2g} triplet: $V_{\text{JT}} = \sum_{\beta} \delta_{\beta} P_{\beta}$, where β runs over the three t_{2g} states. Using Eq. (4) (4) (4) , the JT coupling can be recast into

$$
V_{\rm JT} = \delta_1 (J_x^2 + J_y^2 - 2J_z^2) / \sqrt{6} + \delta_2 (J_x^2 - J_y^2) / \sqrt{2},\tag{8}
$$

where (δ_1, δ_2) transforming as a doublet irreducible representation under the symmetry group O_h denote the tetragonal and orthorhombic distortions of the $VO₆$ octahedron, respectively.

Structural distortions compatible with the observed tetragonal symmetry (lattice constants $a=b>c$) in general involves $\mathbf{q} = 0$ phonons with symmetries E_g and F_{1g} ^{[17](#page-3-16)}. The E_g distortion gives rise to a uniform anisotropy δ_1 , whereas softening of rotational F_{1g} phonons creates a staggered orthorhombic distortions $\pm \delta_2$ on VO₆ octahedra along the [110] and $\left[1\overline{1}0\right]$ chains, respectively.¹⁷ Classical ground state of a tetrahedron, the building block of the pyrochlore lattice, is obtained by minimizing the sum of effective Hamiltonian ([7](#page-1-2)) and JT coupling ([8](#page-2-0)). The resulting phase diagram is shown in Fig. $1(a)$ $1(a)$.

The orthogonal magnetic order is stabilized at large values of the staggered F_{1g} distortion δ_2 . Interestingly, the orthogonal structure also minimizes the \mathcal{J}_1 term of H_{eff} , which originates from the antiferro-orbital interaction in the origi-nal SE Hamiltonian. From Eq. ([4](#page-1-0)), we see that d_{zx} and d_{yz} orbitals are fully occupied along the $[110]$ and $[1\overline{10}]$ chains, respectively. This antiferro-orbital ordering is consistent with the low-temperature symmetry $I4_1/a$ of MnV_2O_4 ^{[6](#page-3-15)} We note that the inclusion of SO interaction does not seem to affect the orbital-ordering pattern.¹⁸ This could be attributed to the already mixed orbital states favored by a strong local trigonal distortion in Mn V_2O_4 .

On the other hand, the collinear antiferromagnetic order becomes the ground state when the lattice distortion is domi-

FIG. 1. (Color online) (a) Classical phase diagram of a tetrahedron. Black and white circles denote $\pm J_z$ components, respectively. δ_1 and δ_2 denote the uniform E_g and staggered F_{1g} distortions, respectively. A narrow low-symmetric phase with noncoplanar spins exists between phases B and C . (b) The $q=0$ orthogonal order and (c) the $\mathbf{q} = (001)$ collinear order are observed in spinels MnV_2O_4 and ZnV_2O_4 , respectively.

nated by the E_g mode with $\delta_1 > 0$, which gives rise to an easy-axis anisotropy according to Eq. ([8](#page-2-0)) The \mathcal{J}_2 term in Eq. (7) (7) (7) indicates that collinear spins parallel to the *z*-axis have the largest antiferromagnetic coupling on nearest-neighbor bonds lying in the *xy* planes. The ground state can then be viewed as a collection of antiferromagnetic Ising chains running along the $[110]$ $[110]$ $[110]$ and $[1\overline{10}]$ directions $[Fig. 1(c)]$, as was indeed observed in ZnV_2O_4 ZnV_2O_4 .⁴ The resulting orbital ordering has occupation numbers $n_{xy} = 1$ and $n_{yz} = n_{zx} = 1/2$, also consistent with the observed $I_1/$ *amd* symmetry in ZnV_2O_4 ^{[5](#page-3-14)} A similar staggered ordering of effective moment **J** is found in cubic vanadates at large λ .^{[10](#page-3-7)}

IV. HOLSTEIN-PRIMAKOFF TRANSFORMATION

Once the classical ground state is determined from the effective Hamiltonian, one can carry out a controlled 1/*J* expansion using the Holstein-Primakoff transformation,

$$
J_z = J - a^{\dagger} a, \quad J_{+} = \sqrt{2J - a^{\dagger} a} a, \quad J_{-} = J_{+}^{\dagger}.
$$
 (9)

The linear quasiparticle spectrum can then be obtained with the aid of Bogoliubov transformation; the calculated spectra for the orthogonal and collinear magnetic orders are shown by the solid lines in Fig. [2.](#page-3-18)

In the case of $q=0$ orthogonal magnetic order, we obtain an acousticlike band whose gap scales as $\Delta \propto \sqrt{\delta_2 - \delta_{2c}}$ in the vicinity of δ_{2c} =0.154*J*. The gapless mode at δ_{2c} signals the transition from phases D–C in Fig. $1(b)$ $1(b)$. Although a similar gapped acoustic mode ($\Delta \approx 1.5$ meV) whose origin is attributed to the orthogonal order was indeed observed in $MnV₂O₄$ ^{[6](#page-3-15)} the effect of the magnetic $Mn²⁺$ ions (*S*=5/2) remains to be clarified. On the contrary, all quasiparticle bands of the collinear magnetic order have an energy gap

 (2009)

0.8 (b) (a) 2 2 Δ 0.4 $\overline{0}$ 0 0.02 0.04 0.06 δ_2 - δ_{2c} ω_{k} 1 1 Á 0 0 Y **T** L Y' Y **T** L Y'

FIG. 2. (Color online) Quasiparticle spectra of vanadium spinels with (a) $q=0$ orthogonal and (b) $q=(001)$ collinear magnetic orders in the limit of strong spin-orbit coupling (solid lines). Also shown for comparison is the magnon spectrum of the collinear order without spin-orbit coupling (dashed lines). In obtaining these spectra, we have used $\delta_1 = 0$, $\delta_2 = 0.2 \mathcal{J}$, and $\delta_1 = \delta_2 = 0$ in (a) and (b), respectively. The symmetry points in *k*-space are $\Gamma = (0,0,0)$, $L = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$, $Y = (0, 1, 0)$, and $Y' = (0, 1, \frac{1}{2})$. The energy ω_k is measured in units of $\mathcal{J} \equiv t^2 / U$. The inset in (a) shows the energy gap Δ as a function of staggered distortion δ_2 .

 $\Delta \approx 0.6$ even when δ_1 =0. This is because the staggered arrangement of frustrated bonds (parallel spins) in the $q = (001)$ collinear order prevents the onset of the soft mode B shown in Fig. [1.](#page-2-1)

Also shown for comparison is magnon spectrum of the collinear order in the absence of SO coupling dashed lines).^{[14](#page-3-10)} The Goldstone mode at the zone center reflects the global O(3) symmetry of the superexchange Hamiltonian in the $\lambda = 0$ limit. The rather narrow bandwidth of the excitation spectrum in the large λ limit can be attributed to the fact that quasiparticles also carry orbital degrees of freedom whose Potts-like interactions are static.

V. CONCLUSION AND OUTLOOK

To summarize, we present an approach to the nontrivial problem of elementary excitations in systems with on-site spin-orbital entanglement. For such compounds, the groundstate magnetic order is usually accompanied by a long-range ordering of orbital moments. The bosonic elementary excitations resulting from deviations of the perfect order thus carry both spin and orbital degrees of freedom. Starting with the $J \rightarrow \infty$ limit, a systematic treatment of the elementary excitations can be realized through the standard 1/*J* expansion. The quasiparticle spectrum is obtained by diagonalizing the quadratic Hamiltonian. Higher-order effects such as quasiparticle scattering can also be studied using well developed methods from conventional large-*S* approach.

It is worth noting that spin-orbital entanglement could exist even in the absence of SO coupling due to the operator structure of SE Hamiltonian. For example, it is shown that composite spin-orbital fluctuations in cubic vanadates lead to orbital-disordered phase and violation of the Goodenough-Kanamori rules.¹⁹ As the large-*J* Hamiltonian $H_{\text{eff}} = \mathcal{P}H_{\text{SE}}\mathcal{P}$ represents the lowest-order term in a J/λ expansion, another important front is to include the effects of finite λ . Higherorder terms can be obtained following the perturbation expansion of the SE Hamiltonian. In studying real compounds, λ is usually of the same order of exchange \mathcal{J} . Whether the excitations can be described by the large-*J* approach depends on the nature of the ground state. In the presence of orbitalmoment ordering, we think the large-*J* method would be the appropriate choice.

Finally, we note that the classical effective Hamiltonian obtained in the $J \rightarrow \infty$ limit provides a practical working model for analyzing the experimental data. Furthermore, being a generic approach, our method can be easily adapted to other compounds where a large SO coupling dominates the low-energy physics.

ACKNOWLEDGMENTS

We thank O. Tchernyshyov and Z. Hao for useful discussions on vanadium spinels.

- ¹Y. Tokura and N. Nagaosa, Science 288 , 462 (2000).
- 2F. Forte, L. J. P. Ament, and J. van den Brink, Phys. Rev. Lett. 101, 106406 (2008).
- ³ K. I. Kugel and D. I. Khomskii, Sov. Phys. Usp. 231, 25 (1982).
- ⁴ S.-H. Lee *et al.*, Phys. Rev. Lett. **93**, 156407 (2004).
- 5M. Reehuis, A. Krimmel, N. Büttgen, A. Loidl, and A. Prokofiev, Eur. Phys. J. B 35, 311 (2003).
- 6V. O. Garlea, R. Jin, D. Mandrus, B. Roessli, Q. Huang, M. Miller, A. J. Schultz, and S. E. Nagler, Phys. Rev. Lett. **100**, 066404 (2008).
- ⁷B. J. Kim *et al.*, Phys. Rev. Lett. **101**, 076402 (2008).
- ⁸O. Tchernyshyov, Phys. Rev. Lett. 93, 157206 (2004).
- 9G. Jackeli and G. Khaliullin, Phys. Rev. Lett. **101**, 216804 $(2008).$
- 10P. Horsch, G. Khaliullin, and A. M. Olés, Phys. Rev. Lett. **91**, 257203 (2003).
- 11S. Di Matteo, G. Jackeli, and N. B. Perkins, Phys. Rev. B **72**, 020408(R) (2005).
- ¹² T. Maitra and R. Valenti, Phys. Rev. Lett. **99**, 126401 (2007).
- 13A. M. Oleś, P. Horsch, and G. Khaliullin, Phys. Rev. B **75**, 184434 (2007).
- ¹⁴ N. B. Perkins and O. Sikora, Phys. Rev. B **76**, 214434 (2007).
- 15A. Abragam and B. Bleaney, *Electron Paramagnetic Resonance* of Transition Ions (Clarendon Press, Oxford, 1970).
- ¹⁶H. Tsunetsugu and Y. Motome, Phys. Rev. B 68, 060405(R) $(2003).$
- 17 G. Chern, Z. Hao, and O. Tchernyshyov (unpublished).
- ¹⁸S. Sarkar, T. Maitra, R. Valenti, and T. Saha-Dasgupta, Phys. Rev. Lett. 102, 216405 (2009).
- 19A. M. Oleś, P. Horsch, L. F. Feiner, and G. Khaliullin, Phys. Rev. Lett. 96, 147205 (2006).